A typical Java program creates many objects, which as you know, interact by invoking methods Through these object interactions, a program can carry out various tasks, such as implementing a GUI, running an animation, or sending and receiving information over a network. Once an object has completed the work for which it was created, its resources are recycled for use by other objects.
Here’s a small program, called
CreateObjectDemo
, that creates three objects: onePoint
object and twoRectangle
objects. You will need all three source files to compile this program.
This program creates, manipulates, and displays information about various objects. Here’s the output:public class CreateObjectDemo {public static void main(String[] args) {
//Declare and create a point object
//and two rectangle objects.
Point originOne = new Point(23, 94);
Rectangle rectOne = new Rectangle(originOne, 100, 200);
Rectangle rectTwo = new Rectangle(50, 100);//display rectOne’s width, height, and area
System.out.println(“Width of rectOne: ” +
rectOne.width);
System.out.println(“Height of rectOne: ” +
rectOne.height);
System.out.println(“Area of rectOne: ” + rectOne.getArea());//set rectTwo’s position
rectTwo.origin = originOne;//display rectTwo’s position
System.out.println(“X Position of rectTwo: ”
+ rectTwo.origin.x);
System.out.println(“Y Position of rectTwo: ”
+ rectTwo.origin.y);//move rectTwo and display its new position
rectTwo.move(40, 72);
System.out.println(“X Position of rectTwo: ”
+ rectTwo.origin.x);
System.out.println(“Y Position of rectTwo: ”
+ rectTwo.origin.y);
}
}
Width of rectOne: 100
Height of rectOne: 200
Area of rectOne: 20000
X Position of rectTwo: 23
Y Position of rectTwo: 94
X Position of rectTwo: 40
Y Position of rectTwo: 72
The following three sections use the above example to describe the life cycle of an object within a program. From them, you will learn how to write code that creates and uses objects in your own programs. You will also learn how the system cleans up after an object when its life has ended.
Author: strong
Classes
The introduction to object-oriented concepts in the lesson titled Object-oriented Programming Concepts used a bicycle class as an example, with racing bikes, mountain bikes, and tandem bikes as subclasses. Here is sample code for a possible implementation of aBicycle
class, to give you an overview of a class declaration. Subsequent sections of this lesson will back up and explain class declarations step by step. For the moment, don`t concern yourself with the details.
public class Bicycle {
// the Bicycle class has three fields
public int cadence;
public int gear;
public int speed;
// the Bicycle class has one constructor
public Bicycle(int startCadence, int startSpeed, int startGear) {
gear = startGear;
cadence = startCadence;
speed = startSpeed;
}
// the Bicycle class has four methods
public void setCadence(int newValue) {
cadence = newValue;
}
public void setGear(int newValue) {
gear = newValue;
}
public void applyBrake(int decrement) {
speed -= decrement;
}
public void speedUp(int increment) {
speed += increment;
}
}
A class declaration for a
MountainBike
class that is a subclass ofBicycle
might look like this:
public class MountainBike extends Bicycle {
// the MountainBike subclass has one field
public int seatHeight;
// the MountainBike subclass has one constructor
public MountainBike(int startHeight, int startCadence, int startSpeed, int startGear) {
super(startCadence, startSpeed, startGear);
seatHeight = startHeight;
}
// the MountainBike subclass has one method
public void setHeight(int newValue) {
seatHeight = newValue;
}
}MountainBike
inherits all the fields and methods ofBicycle
and adds the fieldseatHeight
and a method to set it (mountain bikes have seats that can be moved up and down as the terrain demands).
Language Basics
Variables
You’ve already learned that objects store their state in fields. However, the Java programming language also uses the term “variable” as well. This section discusses this relationship, plus variable naming rules and conventions, basic data types (primitive types, character strings, and arrays), default values, and literals.
Operators
This section describes the operators of the Java programming language. It presents the most commonly-used operators first, and the less commonly-used operators last. Each discussion includes code samples that you can compile and run.
Expressions, Statements, and Blocks
Operators may be used in building expressions, which compute values; expressions are the core components of statements; statements may be grouped into blocks. This section discusses expressions, statements, and blocks using example code that you’ve already seen.
Control Flow Statements
This section describes the control flow statements supported by the Java programming language. It covers the decisions-making, looping, and branching statements that enable your programs to conditionally execute particular blocks of code.
Expressions, Statements, and Blocks
Now that you understand variables and operators, it’s time to learn about expressions, statements, and blocks. Operators may be used in building expressions, which compute values; expressions are the core components of statements; statements may be grouped into blocks.
Expressions
An expression is a construct made up of variables, operators, and method invocations, which are constructed according to the syntax of the language, that evaluates to a single value. You’ve already seen examples of expressions, illustrated in bold below:The data type of the value returned by an expression depends on the elements used in the expression. The expressionint cadence = 0;
anArray[0] = 100;
System.out.println(“Element 1 at index 0: ” + anArray[0]);
int result = 1 + 2; // result is now 3
if(value1 == value2) System.out.println(“value1 == value2”);
cadence = 0
returns anint
because the assignment operator returns a value of the same data type as its left-hand operand; in this case,cadence
is anint
. As you can see from the other expressions, an expression can return other types of values as well, such asboolean
orString
.
The Java programming language allows you to construct compound expressions from various smaller expressions as long as the data type required by one part of the expression matches the data type of the other. Here’s an example of a compound expression:
1 * 2 * 3
In this particular example, the order in which the expression is evaluated is unimportant because the result of multiplication is independent of order; the outcome is always the same, no matter in which order you apply the multiplications. However, this is not true of all expressions. For example, the following expression gives different results, depending on whether you perform the addition or the division operation first:
x + y / 100 // ambiguous
You can specify exactly how an expression will be evaluated using balanced parenthesis: ( and ). For example, to make the previous expression unambiguous, you could write the following:
(x + y) / 100 // unambiguous, recommended
If you don’t explicitly indicate the order for the operations to be performed, the order is determined by the precedence assigned to the operators in use within the expression. Operators that have a higher precedence get evaluated first. For example, the division operator has a higher precedence than does the addition operator. Therefore, the following two statements are equivalent:
x + y / 100
x + (y / 100) // unambiguous, recommended
When writing compound expressions, be explicit and indicate with parentheses which operators should be evaluated first. This practice makes code easier to read and to maintain.
Statements
Statements are roughly equivalent to sentences in natural languages. A statement forms a complete unit of execution. The following types of expressions can be made into a statement by terminating the expression with a semicolon (;
).
Such statements are called expression statements. Here are some examples of expression statements.
- Assignment expressions
- Any use of
++
or—
- Method invocations
- Object creation expressions
In addition to expression statements, there are two other kinds of statements: declaration statements and control flow statements. A declaration statement declares a variable. You’ve seen many examples of declaration statements already:aValue = 8933.234; // assignment statement
aValue++; // increment statement
System.out.println(“Hello World!”); // method invocation statement
Bicycle myBike = new Bicycle(); // object creation statement
Finally, control flow statements regulate the order in which statements get executed. You’ll learn about control flow statements in the next section, Control Flow Statementsdouble aValue = 8933.234; //declaration statement
Blocks
A block is a group of zero or more statements between balanced braces and can be used anywhere a single statement is allowed. The following example,BlockDemo
, illustrates the use of blocks:
class BlockDemo {
public static void main(String[] args) {
boolean condition = true;
if (condition) { // begin block 1
System.out.println(“Condition is true.”);
} // end block one
else { // begin block 2
System.out.println(“Condition is false.”);
} // end block 2
}
}
Control Flow Statements
The statements inside your source files are generally executed from top to bottom, in the order that they appear. Control flow statements, however, break up the flow of execution by employing decision making, looping, and branching, enabling your program to conditionally execute particular blocks of code. This section describes the decision-making statements (
if-then
,if-then-else
,switch
), the looping statements (for
,while
,do-while
), and the branching statements (break
,continue
,return
) supported by the Java programming language.
Operators
Now that you’ve learned how to declare and initialize variables, you probably want to know how to do something with them. Learning the operators of the Java programming language is a good place to start. Operators are special symbols that perform specific operations on one, two, or three operands, and then return a result.
As we explore the operators of the Java programming language, it may be helpful for you to know ahead of time which operators have the highest precedence. The operators in the following table are listed according to precedence order. The closer to the top of the table an operator appears, the higher its precedence. Operators with higher precedence are evaluated before operators with relatively lower precedence. Operators on the same line have equal precedence. When operators of equal precedence appear in the same expression, a rule must govern which is evaluated first. All binary operators except for the assignment operators are evaluated from left to right; assignment operators are evaluated right to left.
Operator Precedence
Operators
Precedence
postfix
expr++ expr—
unary
++expr —expr +expr –expr ~ !
multiplicative
* / %
additive
+ –
shift
<< >> >>>
relational
< > <= >= instanceof
equality
== !=
bitwise AND
&
bitwise exclusive OR
^
bitwise inclusive OR
|
logical AND
&&
logical OR
||
ternary
? :
assignment
= += -= *= /= %= &= ^= |= <<= >>= >>>=
In general-purpose programming, certain operators tend to appear more frequently than others; for example, the assignment operator “
=
” is far more common than the unsigned right shift operator “>>>
“. With that in mind, the following discussion focuses first on the operators that you’re most likely to use on a regular basis, and ends focusing on those that are less common. Each discussion is accompanied by sample code that you can compile and run. Studying its output will help reinforce what you’ve just learned.
Variables
As you learned in the previous lesson, an object stores its state in fields.
int cadence = 0;
int speed = 0;
int gear = 1;
The What Is an Object? discussion introduced you to fields, but you probably have still a few questions, such as: What are the rules and conventions for naming a field? Besides
int
, what other data types are there? Do fields have to be initialized when they are declared? Are fields assigned a default value if they are not explicitly initialized? We’ll explore the answers to such questions in this lesson, but before we do, there are a few technical distinctions you must first become aware of. In the Java programming language, the terms “field” and “variable” are both used; this is a common source of confusion among new developers, since both often seem to refer to the same thing.
The Java programming language defines the following kinds of variables:
Having said that, the remainder of this tutorial uses the following general guidelines when discussing fields and variables. If we are talking about “fields in general” (excluding local variables and parameters), we may simply say “fields”. If the discussion applies to “all of the above”, we may simply say “variables”. If the context calls for a distinction, we will use specific terms (static field, local variables, etc.) as appropriate. You may also occasionally see the term “member” used as well. A type’s fields, methods, and nested types are collectively called its members.
- Instance Variables (Non-Static Fields) Technically speaking, objects store their individual states in “non-static fields”, that is, fields declared without the
static
keyword. Non-static fields are also known as instance variables because their values are unique to each instance of a class (to each object, in other words); thecurrentSpeed
of one bicycle is independent from thecurrentSpeed
of another.
- Class Variables (Static Fields) A class variable is any field declared with the
static
modifier; this tells the compiler that there is exactly one copy of this variable in existence, regardless of how many times the class has been instantiated. A field defining the number of gears for a particular kind of bicycle could be marked asstatic
since conceptually the same number of gears will apply to all instances. The codestatic int numGears = 6;
would create such a static field. Additionally, the keywordfinal
could be added to indicate that the number of gears will never change.
- Local Variables Similar to how an object stores its state in fields, a method will often store its temporary state in local variables. The syntax for declaring a local variable is similar to declaring a field (for example,
int count = 0;
). There is no special keyword designating a variable as local; that determination comes entirely from the location in which the variable is declared — which is between the opening and closing braces of a method. As such, local variables are only visible to the methods in which they are declared; they are not accessible from the rest of the class.
- Parameters You’ve already seen examples of parameters, both in the
Bicycle
class and in themain
method of the “Hello World!” application. Recall that the signature for themain
method ispublic static void main(String[] args)
. Here, theargs
variable is the parameter to this method. The important thing to remember is that parameters are always classified as “variables” not “fields”. This applies to other parameter-accepting constructs as well (such as constructors and exception handlers) that you’ll learn about later in the tutorial.
Naming
- Variable names are case-sensitive. A variable’s name can be any legal identifier — an unlimited-length sequence of Unicode letters and digits, beginning with a letter, the dollar sign “
$
“, or the underscore character “_
“. The convention, however, is to always begin your variable names with a letter, not “$
” or “_
“. Additionally, the dollar sign character, by convention, is never used at all. You may find some situations where auto-generated names will contain the dollar sign, but your variable names should always avoid using it. A similar convention exists for the underscore character; while it’s technically legal to begin your variable’s name with “_
“, this practice is discouraged. White space is not permitted.
- Subsequent characters may be letters, digits, dollar signs, or underscore characters. Conventions (and common sense) apply to this rule as well. When choosing a name for your variables, use full words instead of cryptic abbreviations. Doing so will make your code easier to read and understand. In many cases it will also make your code self-documenting; fields named
cadence
,speed
, andgear
, for example, are much more intuitive than abbreviated versions, such ass
,c
, andg
. Also keep in mind that the name you choose must not be a keyword or reserved word.
- If the name you choose consists of only one word, spell that word in all lowercase letters. If it consists of more than one word, capitalize the first letter of each subsequent word. The names
gearRatio
andcurrentGear
are prime examples of this convention. If your variable stores a constant value, such asstatic final int NUM_GEARS = 6
, the convention changes slightly, capitalizing every letter and separating subsequent words with the underscore character. By convention, the underscore character is never used elsewhere.
Java Language Keywords
Here’s a list of keywords in the Java programming language. You cannot use any of the following as identifiers in your programs. The keywordsconst
andgoto
are reserved, even though they are not currently used.true
,false
, andnull
might seem like keywords, but they are actually literals; you cannot use them as identifiers in your programs.
abstract
continue
for
new
switch
assert
***
default
goto
*
package
synchronized
boolean
do
if
private
this
break
double
implements
protected
throw
byte
else
import
public
throws
case
enum
****
instanceof
return
transient
catch
extends
int
short
try
char
final
interface
static
void
class
finally
long
strictfp
**
volatile
const
*
float
native
super
while
*
not used
**
added in 1.2
***
added in 1.4
****
added in 5.0
Object-Oriented Programming Concepts
If you’ve never used an object-oriented programming language before, you’ll need to learn a few basic concepts before you can begin writing any code. This lesson will introduce you to objects, classes, inheritance, interfaces, and packages. Each discussion focuses on how these concepts relate to the real world, while simultaneously providing an introduction to the syntax of the Java programming language.
What Is an Object?
An object is a software bundle of related state and behavior. Software objects are often used to model the real-world objects that you find in everyday life. This lesson explains how state and behavior are represented within an object, introduces the concept of data encapsulation, and explains the benefits of designing your software in this manner.
What Is a Class?
A class is a blueprint or prototype from which objects are created. This section defines a class that models the state and behavior of a real-world object. It intentionally focuses on the basics, showing how even a simple class can cleanly model state and behavior.
What Is Inheritance?
Inheritance provides a powerful and natural mechanism for organizing and structuring your software. This section explains how classes inherit state and behavior from their superclasses, and explains how to derive one class from another using the simple syntax provided by the Java programming language.
What Is an Interface?
An interface is a contract between a class and the outside world. When a class implements an interface, it promises to provide the behavior published by that interface. This section defines a simple interface and explains the necessary changes for any class that implements it.
What Is a Package?
A package is a namespace for organizing classes and interfaces in a logical manner. Placing your code into packages makes large software projects easier to manage. This section explains why this is useful, and introduces you to the Application Programming Interface (API) provided by the Java platform.
Questions and Exercises: Object-Oriented Programming Concepts
Use the questions and exercises presented in this section to test your understanding of objects, classes, inheritance, interfaces, and packages.
What Is an Interface?
As you’ve already learned, objects define their interaction with the outside world through the methods that they expose. Methods form the object’s interface with the outside world; the buttons on the front of your television set, for example, are the interface between you and the electrical wiring on the other side of its plastic casing. You press the “power” button to turn the television on and off.
In its most common form, an interface is a group of related methods with empty bodies. A bicycle’s behavior, if specified as an interface, might appear as follows:
To implement this interface, the name of your class would change (tointerface Bicycle {void changeCadence(int newValue);
void changeGear(int newValue);
void speedUp(int increment);
void applyBrakes(int decrement);
}
ACMEBicycle
, for example), and you’d use theimplements
keyword in the class declaration:
Implementing an interface allows a class to become more formal about the behavior it promises to provide. Interfaces form a contract between the class and the outside world, and this contract is enforced at build time by the compiler. If your class claims to implement an interface, all methods defined by that interface must appear in its source code before the class will successfully compile.class ACMEBicycle implements Bicycle {// remainder of this class implemented as before
}
Note: To actually compile theACMEBicycle
class, you’ll need to add thepublic
keyword to the beginning of the implemented interface methods. You’ll learn the reasons for this later in the lessons on Classes and Objects and Interfaces and Inheritance.